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A generalized theory of open quantum systems combined with mean-field theory is used to study a super-
conducting wire in contact with thermal baths at different temperatures. It is shown that, depending on the
temperature of the colder bath, the temperature of the hotter bath can greatly exceed the equilibrium critical
temperature, and still the wire remains in the superconducting state, meaning that the effective local tempera-
ture in the wire is maintained below the critical temperature. The effects of contact areas and disorder are
studied. Finally, an experimental setup is suggested to test our predictions.
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Ever since the discovery of superconductivity, fabricating
a superconducting �SC� wire that conducts electricity without
dissipation at room temperature has been a major goal of
modern condensed matter physics. However, since the dis-
covery of high-Tc superconductors1 �which have Tc as high
as �150 K, still far from room temperature and perhaps
close to the upper limit in these materials2� there has been
little or no progress in increasing Tc. Recently, several sug-
gestions have been put forward to increase Tc by fabricating
nanoclusters3,4 or layering of the SC material.5–7

In this paper we consider a different route, based on local
cooling, which may allow for clean SC wires to remain su-
perconducting even if the external temperature exceeds their
Tc. To this aim we study a SC wire in contact with two
different heat baths, held at different temperatures. We con-
sider at first a wire in contact with two heat baths at its edges,
held at different temperatures TL �left bath� and TR �right
bath�, with TR�Tc

eq�TL, where Tc
eq is the equilibrium criti-

cal temperature �upper panel of Fig. 1�a��. We find that de-
pending on the value of TL, the critical value TR,c �defined as
the maximum value of the temperature TR of the hot bath at
which the wire is still SC� can be much larger than Tc

eq,
which implies that the internal temperature in the wire is
maintained below Tc

eq although the average of TL and TR
exceeds it. We then study the effect of different couplings to
the baths and of disorder on the above result. We find the
dependence of TR,c on the coupling to the different baths, and
demonstrate that, in agreement with Anderson’s theorem,8

weak disorder does not change TR,c by much. Strong disorder
leads to the breakdown of the SC state near the right �hot�
bath, and to a spatial dependence of the SC order parameter.

Normal metallic wires in contact with two heat baths at
the edges were recently studied in detail, in the context of
heat flow in such systems.9–11 One of the main conclusions
of Ref. 10 was that in a nonequilibrium system which is not
diffusive, its energy distribution function �DF� is the average
of that of the two baths �a similar observation was verified
experimentally for short wires, when interactions are rela-
tively unimportant,12 a situation which is also likely to hold
for the quasiparticles in SC wires�. This observation will
allow us to provide an analytic expression for the critical
temperature TR,c which shows excellent fit with our numeri-
cal calculations, and provides a direct prediction which may
be tested experimentally.

The method we use is a generalization of the
Bogoliubov–de Gennes �BdG� mean-field theory13 to non-
equilibrium. The starting point is the tight-binding BdG
Hamiltonian on a square lattice �with lattice constant a=1�,
HBdG=�i,���i−��ci�

† ci�− t��i,j�,�ci�
† cj�+�i��ici↑

† ci↓
† +h.c.�,

where ci,�
† creates an electron in the ith lattice site with spin

�, t is the hopping integral �t=1 serves as the energy scale
hereafter�, �i are random on-site energies drawn from a uni-
form distribution U�−W /2,W /2� �hence W is the strength of
disorder, with W=0 representing a clean system�, � is the
chemical potential and �i is the SC order parameter in the ith
lattice site. The order parameter is to be determined self-
consistently on every site via �i=−U�ci↓ci↑�, where U�0 is
the effective electron-electron attractive interaction and � · �
stands for a statistical average. In this paper we treat only
s-wave superconductors, but the formalism can easily be ex-
tended to account for other kinds of symmetry.

Since the BdG Hamiltonian is quadratic, it can be exactly
diagonalized to describe the quasiparticle excitations �n�. To
diagonalize it, one performs a Bogoliubov transformation13

for the electron operators, ci�
† =�n�un�i��n�

† +�vn
��i��n�̄�,
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FIG. 1. �Color online� �a� Main panel: �̄ as a function of TR �in
units of the hopping parameter t� for different values of �. At small
values of �, TR can greatly exceed the equilibrium critical tempera-
ture �indicated by a solid arrow� without destroying superconduc-
tivity in the wire. Inset: position dependence of the order parameter
for different values of TR �at �=0.05�, demonstrating that it is uni-
form along the sample. �b� Same as in �a� but for a constant
�=0.083 and different values of � �describing the contact area of
the right heat bath with the sample�. Upper panel: the geometries
considered in �a� and �b�.
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where un�i� and vn�i� are quasiparticle and quasihole wave
functions, respectively. This yields a set of eigenvalue equa-
tions for the quasiparticle �QP� wave functions,13

	 	̂ �̂

�̂� − 	̂�

	un�i�

vn�i� 
 = En	un�i�
vn�i� 
 , �1�

where 	̂un�i�=−t��i,j,�un�j�+ ��i−�+Uni /2�un�i� �here ni is

the local electron density�, and �̂un�i�=�iun�i�. From Eq. �1�
one obtains the QP wave functions un�i� and vn�i� and the
energies En. In equilibrium, this procedure results in a closed
self-consistent set of equations for the local SC order param-
eter and density, which were recently used to study, e.g.,
effects of disorder and magnetic fields in two-dimensional
superconductors.14–16

Since the QP excitations are noninteracting Fermions,
they can be treated by the formalism of Refs. 9–11, which is
aimed at studying such particles out of equilibrium. To gen-
eralize the method of Refs. 9–11 to the QP excitations, we
define a single-particle density matrix 
̂, with matrix ele-
ments 
nn�= ��n↑

† �n�↑� �note that the particle-hole symmetry
allows one to treat only the up-spin excitations�. The master
equation for 
̂ is of the Lindblad form17 �setting �=kB=1
hereafter� 
̇=−i�H ,
�+LL�
�+LR�
�, where H is the diag-
onal matrix of energies En and

L�L,R��
� = �
nn�

	−
1

2
�Vnn�

�L,R�†Vnn�
�L,R�,
� + Vnn�

�L,R�

Vnn�

�L,R�†

�2�

describe environment-induced inelastic transitions between
different single-particle states. The V operators in Eq. �2�
take on a local form10

Vnn�
�L,R� = �nn�

�L,R�fD
�L,R��En��n↑

† �n�↑,

�nn�
�L,R� = ��0 �

ri�SL,R

�un�ri�un�
� �ri� + vn�ri�vn�

� �ri��� , �3�

where SL,R are the contact area of the left �right� heat bath
with the sample, fD

�L,R��En�=1 / �1+exp�En /TL,R�� is the
Fermi distribution and �0 is some constant scattering rate.
�We take �0=0.1, changing �0 does not alter the results pre-
sented above.� Note that the V operators act on the QPs and
not on the electron operators, since the Fermi function is
defined for the occupation of the QPs �to put it differently,
those electrons which are in the superfluid phase do not ex-
perience scattering from the baths, only the QPs do�.

Once the V operators are evaluated, the master equation is
solved in the asymptotic time limit �i.e., 
̇=0� and a solution
for 
 is obtained. From this solution, the local density and
order parameter are evaluated via the self-consistency condi-
tion, which reads

�i = U�
n

un�i�vn
��i��1 − 2
nn� ,

ni = 2�
n

��un�i��2
nn + �vn�i��2�1 − 
nn�� . �4�

With �i and ni determined, the whole procedure �i.e., the
solution of the BdG equations, the evaluation of the V op-
erators and the solution of the master equation� is repeated
until �i and ni no longer change �within the numerical toler-
ance of 10−5�. We point that this treatment is of a mean-
field type, and as such neglects statistical fluctuations in the
Hamiltonian18 or phase slips.19 As we will show below, in
the ideal case one can define an effective temperature of the
wire, and hence in such a case one can follow the usual
treatment of phase slips in SC wires, using the effective tem-
perature as input.20

We begin by presenting the averaged order parameter

�̄= 1
N�i�i, where N is the total number of lattice sites. We

consider the geometry shown in the side panel of Fig. 1�a�,
where the SC wire �gray area� is connected to the thermal
baths only at its edges. The numerical parameters are as fol-
lows. The wire dimensions are 100�10, U=2, W=0
�clean system� and the density is held at n=0.875 �i.e., n
electrons per site on average, and the chemical potential is
chosen self-consistently to maintain this filling�. We define
TL by its ratio with the critical temperature at equilibrium
Tc

eq, TL /Tc
eq=�1.

If Fig. 1�a�, �̄ is plotted as a function of TR for different
values of �, �=0.05, �top curve�, 0.1, . . . ,1 �bottom curve�.
For low values of �, TR,c can greatly exceed Tc

eq �marked by
a solid arrow�. In the inset of Fig. 1�a� we plot the local order
parameter as a function of position along the wire �averaged
over the transverse direction�, at �=0.05 for different values
of TR=0.035, 0.385, 0.735, and 3.185 �in units of t�. We find
that although there are two different temperatures at the
edges, the order parameter is practically uniform along the
wire, in agreement with the results of Refs. 10 and 11.

In Fig. 1�b� we study a somewhat different �and perhaps
more realistic� situation, in which the heat baths are in con-
tact with the wire not only at the edges but over some area
�see side panel of Fig. 1�b��. We define the parameter
� �1−�� to be the ratio between the contact area of the right
�left� heat bath and the area of the whole wire, such that
�=1 stands for a system in full contact only with the right

heat bath. In Fig. 1�b�, �̄ is plotted as a function of TR �at
�=0.083� for different values of �, �=0.1, �top curve�,
0.2, . . . ,1 �bottom curve�. The �=1 curve is the equilibrium
curve �with Tc

eq marked by an arrow�. As seen, for different
values of �, TR,c may again exceed Tc

eq. Also in this case we
found that both � and the local temperature �calculated for a
similar one-dimensional geometry, with the method of Refs.
10 and 11� are uniform in space �not shown�. This empha-
sizes the fact that the temperature is defined not by the local
baths, but rather by the �inelastic� scattering between states,
which in the clean case span the entire system. We also point
out that one can define an effective local temperature as the
one which relates to the local gap from the equilibrium
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theory of superconductivity13 �see below�. Such a tempera-
ture �which may differ from the one measured by other
means as in Ref. 11� is also uniform in clean wires, and is in
principle experimentally accessible via scanning tunnel mi-
croscope measurements of the local tunneling density of
states.

If one could simply define a local temperature which
gradually shifts from TL to TR, then one would expect that TR
could not exceed Tc

eq and that the order parameter would not
be uniform in space. In order to explain our findings, we
recall that one of the main results of Refs. 10 and 11 is that
in the ballistic limit the temperature is uniform, and a non-
equilibrium DF develops, which is the average of the two
DFs of the left and right baths. In the case represented in Fig.
1�b�, we find that a weighted average between the DFs of the
left and right baths develops, the weight being �. This result,
along with the observation that �i is uniform in space, allows
us to find an analytical expression for the effective TR,c as
follows. In the equilibrium theory of superconductivity,13 the
critical temperature Tc

eq is determined by the gap equation
1

N0U = 1
2�0

�D/Tc
eq 1

x �1−2f�x��dx, where N0 is the density of states
at the Fermi energy, �D is the Debye frequency and f�x� is
the DF. From the above discussion, in the nonequilibrium
case we have f�x�=�fD

�R��x�+ �1−��fD
�L��x�. The resulting

equation for TR,c then reads

1

N0U
=

�

2
�

0

�D/TR,c 1

x
�1 − 2f�x��dx

+
1 − �

2
�

0

�D/TL 1

x
�1 − 2f�x��dx . �5�

These integrals may be evaluated exactly, and with TL /Tc
eq

=� we find

TR,c

Tc
eq = �1−1/�. �6�

In Fig. 2 we plot TR,c /Tc
eq as a function of � �Fig. 2�a��

and of � �Fig. 2�b��, taken from the data of Figs. 1�a� and
1�b�, respectively. The solid line corresponds to Eq. �6� for
the two cases, with the corresponding parameters taken from
the numerical calculation. The agreement between Eq. �6�
and the numerical results confirms that indeed the DF is a
weighted average of the DFs of the two baths. One can now
use Eq. �6� to estimate the effective TR,c of real materials. As

a practical use, it is advantageous to raise TR,c above the
freezing point of liquid Nitrogen, �77 K. For example, con-
sider a desired working temperature of �80 K, and local
refrigerators which cool down to 40 K, deposited on a SC
wire with Tc

eq�60 K. A coverage of 40% refrigerators
would increase TR,c to 78 K.

Perhaps a more intriguing possibility is the enhancement
of TR,c to room temperature. For a wire made of the newly
found iron compound21–23 �Tc

eq�50 K� heated �or cooled� at
the edges ��=0.5�, a temperature TL=7.5 K would drive
TR,c above room temperature. For nanoscale wires made of a
high-Tc material, the fabrication of which was recently
demonstrated,24 taking Tc

eq�80 K, local cooling of TL
=20 K and coverage of �=0.5 would drive TR,c above room
temperature. Of course, other effects �e.g., phonon scattering,
phase fluctuations etc.� may increase in importance for such
high values of TR, and thus inhibit the zero-resistance state.

Next we turn to study the effect of disorder. In Ref. 11 it
was shown that the form of the nonequilibrium DF is robust
against disorder, but that the local temperature profile
changes from a constant temperature to a position-dependent
profile. In Fig. 3 we plot the order parameter �i as a function
of position along the wire for TR=1.5 �which is above
Tc

eq�0.2 in this example�, TL=0.02 and dimensions 50�10,
for different values of disorder, W=0 �dark curve�, 0.2, . . . ,4
�bright curve�. The order parameter is averaged over 500
realizations of disorder. For a clean system, � is uniform and
assumes a position dependence with increasing disorder. For
small values of disorder it is finite everywhere in the sample,
in agreement with Anderson’s theorem.8 For large values of
disorder it vanishes near the right edge, and increases at the
left edge. This is due to the fact that a local temperature
ensues which varies from the left to the right temperature. In
fact, if one compares Fig. 3 to the local temperature calcu-
lated for similar �normal� systems �Fig. 1 of Ref. 11� one
finds that � obeys a simple BCS-like law, with the tempera-
ture replaced by the local temperature.
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FIG. 2. �a� The ratio TR,c /Tc
eq as a function of �, taken from the

data of Fig. 1�a�. The points correspond to the numerical data and
the solid line is Eq. �6� with �=0.5. �b� TR,c /Tc

eq as a function of �,
taken from the data of Fig. 1�b�. The points correspond to the nu-
merical data and the solid line is Eq. �6� with �=0.083.
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eter �, calculated with increasing values of disorder, from the clean
case W=0 �dark line� to strongly disordered case W=4 �light gray
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eq=0.2, and TR=1.5. Inset: suggested experimental
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MAINTAINING THE LOCAL CRITICAL TEMPERATURE… PHYSICAL REVIEW B 80, 214510 �2009�

214510-3



We point out that in this case the local temperature near
the left edge �which corresponds to TL� is lower than the
effective temperature of the clean sample, and hence the rise
in the value of � with increasing disorder near the left edge.
The distance from the right edge at which � vanishes indi-
cates the “thermal length” where the local temperature is
close to TR.11 We also note that already for relatively small
values of disorder �W�0.5 in our case� the localization
length is smaller than the system size, which means that the
onset of a vanishing gap in the system �occurring at
W�1.4� does not directly correspond to the onset of
localization.11,25

In order to test our predictions, we suggest the experimen-
tal setup shown in the inset of Fig. 3. It consists of a SC wire
with etched contacts �either regular four-terminal contacts, or
made as tunnel junction, aimed at measuring the local den-
sity of states at that location�. On top of one of the contacts
an insulating layer is deposited, and on top of it a heater coil
is set. The temperature below the heater can be calibrated by
measuring the resistance between the contacts beneath the
heater when the wire is in the normal state. Then the whole
device is cooled down, and the resistance through the other
contacts is measured as a function of the current that passes
through the heater �i.e., the local temperature beneath it�. In a
uniform system, the resistances of all the contacts should
vanish if the system is SC, and have finite values once the
local temperature beneath the heater rises above TR,c. If the
system is disordered, the different contacts should exhibit a
gradual transition to a normal state.

The length-scale that determines the onset of a tempera-
ture gradient is in this case the QP mean-free path �or diffu-
sion length�.25 While it can be estimated for low Tc metals,
for high-Tc materials it is unknown �although it is suspected

to be small, based on their poor conduction in the normal
state�. By controlling the distances between the contacts our
proposed experiment can thus serve to determine this length,
by relating it to the length scale at which a temperature gra-
dient develops.

In this work we have neglected the effect of phonon scat-
tering, and assumed the effective electron-electron interac-
tion is not appreciably changed by temperature, supported by
the fact that the Debye temperature is much larger than Tc.
However, considering our geometry, electron-phonon �e-ph�
interaction effects may play a significant role as TR reaches
the Debye temperature. This is probably more important in
disordered wires �for clean wires we expect that, on equal
grounds, phonons will also acquire a uniform temperature�.
The e-ph interaction may induce inelastic electron transi-
tions, which will reduce the inelastic mean-free path. Since
the temperature profile is sensitive to the inelastic mean-free
path,25 this effect may be seen in our suggested experiment.

To conclude, we point out that in recent years there have
been tremendous advances in fabricating microrefrigerators,
based on the thermoelectric Peltier effect, and which can
locally cool down their environment substantially.26,27 Since
the efficiency of thermoelectric materials is likely to increase
in the future,28 one can conceive a device composed of a
�relatively� high-Tc material, on top of which are embedded a
series of microrefrigerators, covering an area of the material
and cooling it enough for it to operate at a temperature which
exceeds its Tc; a possibility that may allow for integrating
superconducting wires as circuit elements in various devices.
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